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Effects of normal viscous stresses on radial viscous fingering
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We revisit the radial viscous fingering problem in a Hele-Shaw cell, and consider the action of viscous
stresses originated from velocity gradients normal to the fluid-fluid interface. The evolution of the interface
during linear and weakly nonlinear stages is described analytically through a mode-coupling approach. We find
that the introduction of normal stresses influences the stability and the ultimate morphology of the emerging
patterns. Although at early stages normal stresses tend to stabilize the interface, they act to favor the develop-
ment of tip-splitting phenomena at the weakly nonlinear regime. We have also verified that finger competition
events are only significantly affected by normal stresses for circumstances involving the development of a large

number of interfacial fingers.
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I. INTRODUCTION

Since the seminal works by Bataille [1], Wilson [2], and
Paterson [3] the radial viscous fingering problem has been
extensively studied [4], both experimentally and theoreti-
cally. It constitutes a variation of the celebrated Saffman-
Taylor problem in rectangular channels [5]. Under radial
flow circumstances a less viscous fluid is radially injected
into the narrow gap of a Hele-Shaw cell, which was previ-
ously filled with a more viscous fluid. Initially, the fluid-fluid
interface is circular, but as time progresses, the interface un-
dulates and fingerlike structures grow. Eventually, fingers of
different lengths compete, spread and start to split at their
tips, creating fanlike, branched patterns [6—8]. These experi-
mental findings have been accurately modeled by intensive
numerical simulations [9,10]. Based on all these facts, it is
well established that spreading, splitting and competition are
the three basic growth mechanisms of the radial viscous fin-
gering process.

Despite all the progress made in the understanding of the
radial fingering problem, the influence of normal viscous
stresses on the dynamical evolution of the patterns, and their
effects on the ultimate shape of the interface have been
largely neglected. These stresses originated from velocity
gradients acting normal to the interface [11]. Although nor-
mal stresses have no role in the rectangular version of the
Hele-Shaw problem [12], it has been shown that they may
have a significant impact in radial flow situations. Indeed, a
few recent studies have demonstrated that normal viscous
stresses act as an important element in determining the shape
of rising patterns in the centrifugally driven rotating Hele-
Shaw problem [12,13], and also on the flow of magnetic and
nonmagnetic fluids in variable-gap Hele-Shaw cells [14].
However, to our surprise, except for the initial efforts briefly
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presented by Joseph and collaborators [15], the action of
normal viscous stresses on the traditional radial viscous fin-
gering problem has been widely overlooked. A more thor-
ough study about it is lacking.

In contrast to the vast majority of works in radial Hele-
Shaw flows, we investigate how normal viscous stresses in-
fluence the interfacial evolution during linear and weakly
nonlinear stages. The impact of such stresses is accounted for
through a modified Young-Laplace pressure jump interfacial
boundary condition. Within this context, we study how the
stability properties of the interface, and the shape of the
emerging patterns respond to the action of these stresses. At
early linear stages it is found that normal stresses stabilize
the system, in the sense that they reduce the number of re-
sulting fingers. This characterizes a sort of effective surface-
tension behavior. However, at the onset of nonlinear stages,
we have verified that normal stresses do favor the occurrence
of finger tip-splitting. Besides, finger competition can be re-
strained by normal stresses for large interfacial wave num-
bers. These facts indicate that normal viscous stresses are of
relevance to a proper description of the interface behavior,
and therefore should not be neglected.

II. GOVERNING EQUATIONS

Consider a Hele-Shaw cell of gap spacing b containing
two immiscible, incompressible, viscous fluids (see Fig. 1).
Denote the viscosities of the inner and outer fluids, respec-

FIG. 1. Schematic representation of the radial viscous fingering
problem in a Hele-Shaw cell.
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tively as n; and 7,. Between the two fluids there exists a
surface tension o. Fluid 1 is injected into fluid 2 at constant
flow rate Q, equal to the area covered per unit time.

We describe the perturbed fluid-fluid interface as R(6,1)
=R(1)+{(6,1), where 6 represents the polar angle, R(7) is the
time dependent unperturbed radius

Ry=R+ 2, (1)
o

with R, being the unperturbed radius at r=0. In addition,

400
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n=—0o

denotes the net interface perturbation with Fourier ampli-
tudes ¢£,(f), and discrete azimuthal wave numbers n
=0,*1,=*2,.... Our perturbative approach keeps terms up
to the second order in {. In the Fourier expansion [Eq. (2)]
we include the n=0 mode to maintain the area of the per-
turbed shape independent of the perturbation {. Mass conser-
vation imposes that the zeroth mode is written in terms of the
other modes as {,=—(1/2R) = |£,(t)|*.

n#0
For the quasi-two-dimensional geometry of the Hele-

Shaw cell, the flow velocity Vj=—V¢j, where qu represents
the velocity potential in fluids j=1,2. The equation of mo-
tion of the interface is given by Darcy’s law [5,16]

A(¢2+¢1)+(¢2—¢1>=
2 2

_bPpi-p)
12(m + 1)’

3)

where the dimensionless parameter A=(7,—n;)/(7,+ 7,) is
the viscosity contrast, and p; represents the hydrodynamic
pressure.

To include the contributions coming from surface tension
and viscous stresses we consider a generalized Young-
Laplace pressure boundary condition, which expresses the
jump in the normal stress across the fluid-fluid interface
[12-14]

n-[7?-7V]. n=0o«x. (4)

The left-hand side expresses the normal stress difference be-
tween the fluids which balances the stress of interfacial ten-
sion. The term at the right-hand side of Eq. (4) represents the
contribution related to surface tension and interfacial curva-
ture «, with n=V[r—R(8,1)]/|V[r-R(6,t)]| denoting the
unit normal vector at the interface.

The stress tensor [11]

av; ﬂvk] (5)

Tk == PO+ ﬂ{ﬁ_xk"‘ &_)c,
includes a viscous friction term proportional to the fluids’
viscosity 7, &, denotes the Kronecker delta function, and v;
represents the ith component of the fluids’ velocity vector.
We rewrite Eq. (5) for each fluid using polar coordinates,
substitute the resulting expressions into Eq. (4), and evaluate
it at the interface to get
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Note that the second term at the right-hand side of Eq. (6)
takes into account stresses originated from normal velocity
gradients. The parameter & [5=1(6=0) if normal stresses are
(not) considered] is used to keep track of the contributions
coming from the normal stress term in Eq. (6).

The problem is then specified by the generalized pressure
jump boundary condition Eq. (6), plus the kinematic bound-
ary condition, which states that the normal components of
each fluid’s velocity are continuous at the interface

n-Vé,=n-Vo,. (7)

We adapt a weakly nonlinear approach originally developed
to study radial flow in Hele-Shaw cells without including
normal stresses [16]. First, we define Fourier expansions for
the velocity potentials, which obey Laplace’s equation
V2¢j:0. Then, we express ¢; in terms of the perturbation
amplitudes £, by considering the kinematic boundary condi-
tion (7). Substituting these relations, and the modified pres-
sure jump condition Eq. (6) into Eq. (3), always keeping
terms up to second order in ¢, and Fourier transforming, we
find the dimensionless equation of motion for the perturba-
tion amplitudes (for n# 0)

L= NG+ 2 [Fn") ooy + Gnan )y L],
n' #0

(8)

where the overdot denotes total time derivative, and

11 b* b’B, .,
)\(ﬂ):m{ﬁ[ﬂiﬂ(l +5ﬁ> —J(n)] —a|n|(n - 1)}

)
is the linear growth rate, with
2
J(n)=[l +5@|n|(|n|+A)]. (10)
The dimensionless parameter
- _omRy (11)
0171 + 72)

measures the relative strength between surface tension and
viscous forces.
The second-order mode-coupling terms are given by

2
F(n,n') = ﬂ{ sen(Q) {A(l - sgn(nn')) + 5%f1 (n,n’)}

J(n) R} 2
b’B '
—@{1—%(3n’+n)]}, (12)

and
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FIG. 2. (Color online) Linear growth rate \(n) as a function of
mode n, for A=1, B=0.64, b=0.16, and 6=0,1, at time ¢=1.

G(n,n') = ﬁ{'g[A[l —sgn(nn')] + 56b—1:2f2(n,n')] - Il?}
(13)
where
filn.n") ={A[(= )*+n'? = n* sgn(nn')]
— |n|[k =1+ sgn(nn’)]+3|n'|}, (14)
and k=1,2.

The sgn function equals =1 according to the sign of its
argument. In Eq. (8) lengths are rescaled by R, and veloci-
ties by |Q|/(27R,). From now on, we work with the dimen-
sionless version of the equations. After appropriate reintro-
duction of dimensions, it can be shown that the functions
(), F(n,n'), and G(n,n’) reduce to the equivalent expres-
sions obtained in Ref. [16] in the zero normal stress limit
(6=0). Although Q can be either positive (injection) or nega-
tive (suction), we focus on the traditional case Q >0. More-
over, we consider the unstable regime in which A=0. We
stress that the values we take for our dimensionless param-
eters are consistent with typical physical quantities used in
real experiments in radial viscous flow [1,3,4,6-8].

III. LINEAR AND WEAKLY NONLINEAR REGIMES

In this section we investigate the consequences of the
changes introduced by the inclusion of normal viscous
stresses in both linear and weakly nonlinear stages of the
interface evolution. We focus on two basic questions: (i) at
the linear level, what are the changes on the linear growth
rate? (ii) regarding the onset of nonlinear effects, how do
finger tip-splitting and finger competition are influenced by
normal stresses?

We begin by using the linear growth rate [Eq. (9)] to gain
insight about the influence of the normal stresses at the linear
stage of pattern evolution. Figure 2 plots \(n) as a function
of mode number n for A=1, B=0.64, b=0.16, t=1, and &
=0, 1. The most evident feature in Fig. 2 is the fact that the
inclusion of viscous stresses (5=1) leads to a decreased
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growth rate of the fastest growing mode n,,, [obtained by
setting d\(n)/dn=0], shifting it toward lower values of azi-
muthal wave numbers. In Fig. 2 n,,,, changes from approxi-
mately 14 to 12 due to normal stresses. We have verified that
this shift is increasingly larger for smaller values of B. Since
. determines the typical number of fingers formed at a
given time, this means that by considering the normal
stresses one should expect slower growth, and possibly pat-
terns with a smaller number of fingers. In this sense, these
stresses act to stabilize the interface assuming the role of an
effective surface tension. On the other hand, we notice that
the band of unstable modes [estimated by setting \(n)=0]
remains nearly unchanged. These linear stability results are
consonant with the similar linear findings presented in Refs.
[12-14].

An illustrative purely linear evolution of the interface is
depicted in Fig. 3 which considers the participation of two
generic cosine modes [a fundamental n=6 and its harmonic
2n=12]. The evolving interfaces are taken at equal time in-
tervals, for: (a) 6=0, and (b) 6=1. In (c) the final time inter-
faces [taken at t=4.58] obtained in (a) and (b) are plotted
together to facilitate comparison. We set A=1, B=0.64, and
b=0.16. The initial amplitudes are a,(0)=3.1X1073, and
a,,(0)=107° [note that a,,(0) <a,(0)]. We stop the time evo-
lution of the patterns shown in Fig. 3 as soon as the base of
the fingers starts to move inward, what would make succes-
sive interfaces to cross one another. Since this crossing is not
observed in experiments [1,3,4,6-8], we follow Ref. [17]
and adopt the largest time before crossing as the upper bound
time for the validity of our theoretical description. Regard-
less the value of & the resulting patterns are sixfold symmet-
ric, presenting the formation of fingering structures which
show no tendency toward finger broadening and finger tip
splitting. However, in the presence of normal stresses pattern
evolution is delayed, so that the lengths of the outward mov-
ing fingers are smaller, illustrating the stabilizing nature and
the surface-tension-like role of viscous stresses at purely lin-
ear stages.

One must go beyond purely linear analysis in order to
systematically investigate the main morphological features
possibly induced by normal stresses. To do that we now turn
our attention to the weakly nonlinear flow stage, and begin
by discussing finger tip-splitting events. Despite the some-
what complicated nature of the mode-coupling Eq. (8), we
will see that valuable information can be extracted from it by
examining the coupling of a small number of Fourier modes.
To simplify our discussion we rewrite Eq. (8) in terms of
cosine and sine modes, where the cosine a,,={,+{_, and sine
b,=i({,—{_,) amplitudes are real valued. For consistent
second-order expressions, we replace the time derivative
terms d,, and b, by \(n)a, and \(n)b,, respectively. Without
loss of generality we choose the phase of the fundamental
mode so that @,>0 and b,=0. Under such circumstances,
finger tip-splitting phenomena are described by considering
the influence of a fundamental mode »n on the growth of its
harmonic 2n [16]. The equations of motion for the harmonic
mode are quite simple, and can be written as

s, =\(12n)a,, + T(Zn,n)ai, (15)
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FIG. 3. (Color online) Snapshots of the purely linear evolution of the interface, plotted at equal time intervals including two represen-
tative cosine modes n=6 and 2n=12 when (a) =0, and (b) §=1. The final time interfaces plotted in (a) and (b) are overlaid in (c). Note that
the radial growth of the fingers moving outward tends to be suppressed when =1.

by =N(2n)b,,, (16)
where the finger tip function is defined as
1
T(2n,n) = E[F(Zn,n) +\n)G(2n,n)]. (17)

Since the growth of the sine mode b,, is uninfluenced by a,,
and does not present second-order couplings, we focus on
the growth of the cosine mode a,, as given by Eq. (15). It
shows that the presence of the fundamental mode n forces
growth of the harmonic mode 2n. The function T(2n,n) acts
like a driving force and its sign dictates if finger tip-splitting
is favored or not by the dynamics. If T(2n,n)<<0, a,, is
driven negative, precisely the sign that leads to finger tip
broadening and finger tip splitting. If 7(2n,n) >0 growth of
a,,>0 would be favored, leading to outward-pointing finger
tip narrowing.

It is important to stress that the driving term in Eq. (15)
spontaneously induces the growth of the harmonic mode.
Therefore, from our second-order mode-coupling approach
finger broadening and finger tip splitting are obtained even in

the absence of random noise, and without artificially intro-
ducing the presence of a sizable harmonic through initial
conditions. On the other hand, these maneuvers or the con-
sideration of unrealistic long times would be necessary to
observe finger broadening and tip-splitting events by using a
purely linear theory. In this sense, these two growth mecha-
nisms are unique predictions of an intrinsically nonlinear
theory.

To analyze the influence of normal viscous stresses on the
tip-splitting behavior at second order, in Fig. 4 we plot the
behavior of T(2n,n) as a function of the viscosity contrast A,
for two Fourier modes (n=4 and n=6). This is done for the
situations in which normal viscous stresses are neglected
(6=0), and taken into consideration (6=1). We set B=0.64,
b=0.16, and r=5.56. Except for a few smaller values of A for
which T(2n,n) =0, we see that T(2n,n) is mostly negative,
indicating tendency toward finger tip splitting. Most interest-
ingly, we can also observe that, regardless the value of n, the
curves associated with =1 lie below the corresponding
curves for 6=0. This indicates that the fingers have an en-
hanced tendency to split at their tips, due to the effects of
normal viscous stresses.
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FIG. 4. (Color online) Behavior of the function 7(2n,7n) in terms
of the viscosity contrast (0=A = 1), for two values of mode n, both
in the presence (5=1), and absence (6=0) of normal viscous
stresses.
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The role of normal viscous stresses in determining the
finger tip-splitting behavior is even more clearly illustrated
in Fig. 5 which plots the time evolution of the interface,
plotted at equal time intervals, considering the interaction of
two representative cosine modes [a fundamental n=6 and its
harmonic 2n=12], for: (a) 6=0, and (b) §=1. In (c) the final
time interfaces [taken at =5.62] obtained in (a) and (b) are
plotted together. Again, we set A=1, B=0.64, and 6=0.16.
The initial amplitudes are ,(0)=1.39X 1073, and a,,(0)
=107 [note that a,,(0)<a,(0)]. Note that differently from
the purely linear picture of the phenomenon, in Fig. 5 the
modes n=6 and n=12 are not independent, but coupled to
each other.

In Fig. 5(a) we see a nearly circular initial interface evolv-
ing to a six-fingered structure. Finger broadening can be ob-
served and, at later times, the finger tips become increasingly
flat. However, the finger tips do not bifurcate. It is also worth
noting that a similar, but purely linear description of the in-
terface motion as illustrated by Fig. 3(a) leads to patterns
presenting fingers that are sharper than the fingers obtained
Fig. 5(a). The development of broad fingers in Fig. 5(a) re-
sults from nonlinear effects.

4 4
2t 2
> 0 > 0
-2t —2f
a7 -2 0 2 = -2 0 2 4
(a) X (b) X
4
2,
> 0
-2t
=1 -2 0 2 4
(c) X

FIG. 5. (Color online) Snapshots of the evolving the interface, plotted at equal time intervals for the interaction of two cosine modes n=6
and 2n=12 when (a) 6=0, and (b) §=1. The final time interfaces plotted in (a) and (b) are overlaid in (c). Finger tip-splitting is favored when

o=1.
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The scenario presented in Fig. 5(a) is changed when we
include the action of normal viscous stresses. As one can see
by examining Fig. 5(b) the presence of normal stresses leads
to wider fingers, having blunt tips. At later times, these
grown fingers clearly start to bifurcate, by splitting at their
tips. The morphological differences between the final pat-
terns shown in Figs. 5(a) and 5(b) are depicted in Fig. 5(c).
On this basis, we can say that a stronger tendency toward
splitting is observed when normal viscous stresses are taken
into account. This indicates that such stresses play an impor-
tant role in the occurrence of tip-splitting phenomena in ra-
dial viscous fingering.

The increased tendency toward finger tip-splitting illus-
trated in Fig. 5 can be interpreted by the effective surface
tension role played by the normal viscous stresses, as com-
mented during the discussion of the linear effects. By adding
viscous stresses into the problem we are in fact increasing
the net surface tension acting on the fingers. It is well known
that surface tension is the physical force causing spreading
and splitting [4]: a growing tip with surface tension does not
stabilize, but undergoes a tip-splitting instability. This is be-
cause surface tension slows the growth of sharply curved
surfaces. Therefore, it seems reasonable to expect that the
presence of normal viscous stresses would lead to an en-
hanced tip-splitting behavior. In this sense viscous stresses
play a dual role; linearly, they act to stabilize the system by
decreasing the radial growth and the typical number of
emerging fingers; but at the slightly nonlinear level they de-
stabilize the fingers to splitting, ensuing further tip bifurca-
tion.

At this point, we turn to the investigation of the influence
of normal viscous stresses on the finger competition behav-
ior. Considering the length variability as a measure of the
finger competition, it can be described by the influence of a
fundamental mode 7, assuming n is even, on the growth of
its subharmonic mode n/2 [13,16]. The correctness and ac-
curacy of this simple finger competition mechanism has been
tested by sophisticated numerical simulations [18,19]. Within
this approach and considering the same assumptions used to
derive Egs. (15) and (16), the equations of motion for the
subharmonic mode can be written as

dn/Z = {)\(H/Z) + C(n)an}an/Z’ (18)

bn/Z = {)\(n/z) - C(n)an}bn/2’ (19)
where the finger competition function is given by

1 nn n n
C(n)zi[F<— 5,5) +)\(n/2)G<5,—E>]. (20)

Observing Eqgs. (18) and (19) we verify that C(n) >0 in-
creases the growth of the cosine subharmonic a,,, while
inhibiting growth of its sine subharmonic b,,,. The result is
an increased variability among the lengths of fingers of the
less viscous fluid 1 penetrating into the more viscous fluid 2.
This effect describes finger competition. Sine modes b,
would vary the lengths of fingers of the more viscous fluid 2
penetrating into the less viscous fluid 1, but it is clear from
Eq. (19) that their growth is suppressed. Reversing the sign
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FIG. 6. (Color online) Finger competition function C(n) as
given by Eq. (20) in terms of the viscosity contrast A(0=A = 1), for
two values of mode n, both in the presence (6=1), and absence
(6=0) of normal viscous stresses.

of C(n) would exactly reverse these conclusions, such that
modes b,,, would be favored over modes a,,,. Regardless of
its sign, the function C(n) measures the strength of the com-
petition: increasingly larger values of C(n) lead to enhanced
finger competition.

Figure 6 illustrates how the finger competition function
C(n) varies with the viscosity contrast A for two generic
modes n=14 and n=18. We take B=0.64, b=0.16, and ¢
=5.56. Independently of the values of n and &, we note that
C(n) >0, indicating competition among the fingers moving
outward. Moreover, it is evident that not much difference is
obtained when normal viscous stresses are taken into consid-
eration. The two C(n) curves for mode n=14 are nearly in-
distinguishable, while the two corresponding curves for
mode n=16 just present a small separation as A— 1. Never-
theless, rigorously speaking the competition would be
slightly decreased if normal stresses act, but again as we can
see from Fig. 6 this would be a very mild effect. However,
we also have verified that for larger modes (for instance, n
=30 or n=40) the decrease in finger competition due to nor-
mal stresses becomes more accentuated. This is an indication
the finger competition would be more significantly changed
by stresses for situations involving the development of a
large number of fingers.

IV. CONCLUSIONS

Although radial viscous fingering in Hele-Shaw cells is a
vastly studied problem, the influence of normal viscous
stresses on the stability and ultimate shape of the patterns has
been markedly overlooked. In this work we tacked the prob-
lem by applying a mode-coupling approach. We performed
calculations on a model which is simple enough to be ame-
nable to analytical solution and yet retains the essential phys-
ics of the problem involving normal viscous stresses. As a
result, linear contributions provide information about the in-
stability of the interface, whereas weakly nonlinear terms
allow us to access and predict important facts about the mor-
phology of the patterns.

066312-6



EFFECTS OF NORMAL VISCOUS STRESSES ON RADIAL...

Our linear results indicate that normal viscous stresses
tend to stabilize the interface, slowing down its growth, and
reducing the number of interfacial fingers. This attributes a
surface tensionlike signature to normal stresses. At the
weakly nonlinear regime, the stresses favor the occurrence of
finger tip-splitting events, but act to diminish finger compe-
tition, mainly when the interface presents a large number of
fingers. These findings indicate that normal viscous stresses
can affect the basic growth mechanisms of radial viscous
fingering, and therefore should not be neglected.

Our theoretical work makes specific predictions that have
not yet been tested experimentally. One possible experimen-
tal check about the role of normal stresses could be per-
formed by investigating the number fingers emerging at early
states of pattern evolution. By focusing on the high viscosity
contrast A (e.g., A— 1) and low B(B~0.01-0.1) limits, one
could compare the experimental data for the actual number
of emerging fingers, with the fastest growing mode (7,
predicted by our linear stability analysis, both in the absence
(6=0) and presence (6=1) of the normal stress contribution.
A similar experimental test has been performed in Ref. [12]

PHYSICAL REVIEW E 79, 066312 (2009)

where the influence of normal stresses on the morphology of
patterns in rotating Hele-Shaw cells has been examined. Ad-
ditional tests, now related to fully nonlinear stages of the
dynamics, could also be performed by implementing exten-
sive numerical simulations (for instance, by using boundary
integral techniques [9,18]) that take into account our modi-
fied pressure boundary condition [Eq. (6)]. This would allow
one to scrutinize systematically the predicted stress-induced
enhancement of finger tip-splitting at later stages. In sum-
mary, we hope our current work will stimulate further inves-
tigations about the role of normal viscous stresses on the
radial viscous fingering problem.
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